Post Top Ad

Saturday, April 22, 2023

on video What is a MOSFET? How MOSFETs Work? (MOSFET Tutorial)


 I will explain the basic structure and working principle of MOSFETs used in switching, boosting or power balancing tasks in DC-DC converter circuits, motor driver circuits and many more power electronics circuits. MOSFETs are the most widely used field-effect transistors that operate with voltage control.


We can examine FETs in two groups as you can see here. We had a lesson in which I explained JFET before. I will explain the MOSFET in this trouble. The abbreviation of MOSFET comes from the initials of the Metal Oxide Semiconductor Field Effect Transistor words.

What is a MOSFET : Working and Its Applications

The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) transistor is a semiconductor device that is widely used for switching purposes and for the amplification of electronic signals in electronic devices.  A MOSFET is either a core or integrated circuit where it is designed and fabricated in a single chip because the device is available in very small sizes.  The introduction of the MOSFET device has brought a change in the domain of switching in electronics. Let us go with a detailed explanation of this concept.


What is MOSFET?

A MOSFET is a four-terminal device having source(S), gate (G), drain (D) and body (B) terminals. In general, The body of the MOSFET is in connection with the source terminal thus forming a three-terminal device such as a field-effect transistor. MOSFET is generally considered as a transistor and employed in both the analog and digital circuits. This is the basic introduction to MOSFET. And the general structure of this device is as below :

From the above MOSFET structure, the functionality of MOSFET depends on the electrical variations happening in the channel width along with the flow of carriers (either holes or electrons). The charge carriers enter into the channel through the source terminal and exit via the drain.


The width of the channel is controlled by the voltage on an electrode which is called the gate and it is located in between the source and the drain. It is insulated from the channel near an extremely thin layer of metal oxide. The MOS capacity that exists in the device is the crucial section where the entire operation is across this.


A MOSFET can function in two ways


Depletion Mode

Enhancement Mode

Depletion Mode

When there is no voltage across the gate terminal, the channel shows its maximum conductance. Whereas when the voltage across the gate terminal is either positive or negative, then the channel conductivity decreases. Please refer to this link to know more about Depletion Mode MOSFET

Enhancement Mode

When there is no voltage across the gate terminal, then the device does not conduct. When there is the maximum voltage across the gate terminal, then the device shows enhanced conductivity.

Working Principle of MOSFET

The main principle of the MOSFET device is to be able to control the voltage and current flow between the source and drain terminals. It works almost like a switch and the functionality of the device is based on the MOS capacitor. The MOS capacitor is the main part of MOSFET.


The semiconductor surface at the below oxide layer which is located between the source and drain terminal can be inverted from p-type to n-type by the application of either a positive or negative gate voltages respectively.  When we apply a repulsive force for the positive gate voltage, then the holes present beneath the oxide layer are pushed downward with the substrate.

The depletion region populated by the bound negative charges which are associated with the acceptor atoms. When electrons are reached, a channel is developed. The positive voltage also attracts electrons from the n+ source and drain regions into the channel. Now, if a voltage is applied between the drain and source, the current flows freely between the source and drain and the gate voltage controls the electrons in the channel. Instead of the positive voltage, if we apply a negative voltage, a hole channel will be formed under the oxide layer.


P-Channel MOSFET

The P- channel MOSFET has a P- Channel region located in between the source and drain terminals. It is a four-terminal device having the terminals as gate, drain, source, and body. The drain and source are heavily doped p+ region and the body or substrate is of n-type. The flow of current is in the direction of positively charged holes.


When we apply the negative voltage with repulsive force at the gate terminal, then the electrons present under the oxide layer are pushed downwards into the substrate. The depletion region populated by the bound positive charges which are associated with the donor atoms. The negative gate voltage also attracts holes from the p+ source and drain region into the channel region. Please refer to this link to know more about – P-Channel MOSFET.


 I will explain the basic structure and working principle of MOSFETs used in switching, boosting or power balancing tasks in DC-DC converter circuits, motor driver circuits and many more power electronics circuits. MOSFETs are the most widely used field-effect transistors that operate with voltage control.


We can examine FETs in two groups as you can see here. We had a lesson in which I explained JFET before. I will explain the MOSFET in this trouble. The abbreviation of MOSFET comes from the initials of the Metal Oxide Semiconductor Field Effect Transistor words.

What is a MOSFET : Working and Its Applications

The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) transistor is a semiconductor device that is widely used for switching purposes and for the amplification of electronic signals in electronic devices.  A MOSFET is either a core or integrated circuit where it is designed and fabricated in a single chip because the device is available in very small sizes.  The introduction of the MOSFET device has brought a change in the domain of switching in electronics. Let us go with a detailed explanation of this concept.


What is MOSFET?

A MOSFET is a four-terminal device having source(S), gate (G), drain (D) and body (B) terminals. In general, The body of the MOSFET is in connection with the source terminal thus forming a three-terminal device such as a field-effect transistor. MOSFET is generally considered as a transistor and employed in both the analog and digital circuits. This is the basic introduction to MOSFET. And the general structure of this device is as below :

From the above MOSFET structure, the functionality of MOSFET depends on the electrical variations happening in the channel width along with the flow of carriers (either holes or electrons). The charge carriers enter into the channel through the source terminal and exit via the drain.


The width of the channel is controlled by the voltage on an electrode which is called the gate and it is located in between the source and the drain. It is insulated from the channel near an extremely thin layer of metal oxide. The MOS capacity that exists in the device is the crucial section where the entire operation is across this.


A MOSFET can function in two ways


Depletion Mode

Enhancement Mode

Depletion Mode

When there is no voltage across the gate terminal, the channel shows its maximum conductance. Whereas when the voltage across the gate terminal is either positive or negative, then the channel conductivity decreases. Please refer to this link to know more about Depletion Mode MOSFET

Enhancement Mode

When there is no voltage across the gate terminal, then the device does not conduct. When there is the maximum voltage across the gate terminal, then the device shows enhanced conductivity.

Working Principle of MOSFET

The main principle of the MOSFET device is to be able to control the voltage and current flow between the source and drain terminals. It works almost like a switch and the functionality of the device is based on the MOS capacitor. The MOS capacitor is the main part of MOSFET.


The semiconductor surface at the below oxide layer which is located between the source and drain terminal can be inverted from p-type to n-type by the application of either a positive or negative gate voltages respectively.  When we apply a repulsive force for the positive gate voltage, then the holes present beneath the oxide layer are pushed downward with the substrate.

The depletion region populated by the bound negative charges which are associated with the acceptor atoms. When electrons are reached, a channel is developed. The positive voltage also attracts electrons from the n+ source and drain regions into the channel. Now, if a voltage is applied between the drain and source, the current flows freely between the source and drain and the gate voltage controls the electrons in the channel. Instead of the positive voltage, if we apply a negative voltage, a hole channel will be formed under the oxide layer.


P-Channel MOSFET

The P- channel MOSFET has a P- Channel region located in between the source and drain terminals. It is a four-terminal device having the terminals as gate, drain, source, and body. The drain and source are heavily doped p+ region and the body or substrate is of n-type. The flow of current is in the direction of positively charged holes.


When we apply the negative voltage with repulsive force at the gate terminal, then the electrons present under the oxide layer are pushed downwards into the substrate. The depletion region populated by the bound positive charges which are associated with the donor atoms. The negative gate voltage also attracts holes from the p+ source and drain region into the channel region. Please refer to this link to know more about – P-Channel MOSFET.

No comments:

Post a Comment

Post Top Ad

Pages