Post Top Ad

Tuesday, March 28, 2023

on video How to make 3.7v battery charger Using 3582ic | 3.7v battery charger | Pc Take


 article I am going to teach you how to make 3.7 Volt Lithium ion or LiPo battery charger circuit Lithium ion or LiPo batteries are very popular, especially with makers like. These batteries are also very sensible and dangerous. If you don't control the process of charging such batteries, they will stop working or get worse. The battery can swell and even explode from overcharging, and a deep discharge can make the battery fail.

We have a PNP transistor connected in series with 4 diodes that will simulate a load. At the base of the transistor, we have a Zener reference diode (TL431) which will get open at a certain voltage value and by that connects ground to the transistors base and when the transistor is active, we bypass the battery and waste the power on the diodes instead. This ZENER diode is the TL431 and it has a reference pin, so by adjusting the potentiometer we can set this reference to be at 4.2V, that's how we select when the charging process will stop.


Before understanding how the circuit works, let me tell you that I am using custom-made PCB to make this circuit. This project is sponsored and supported by JLCPCB

I supply it with 4.2V from my power supply. I connect my multimeter at the output and using the potentiometer, we first fix the threshold value to around 4.2V, I will use a battery which is discharged and below 3.90V When I connect it to the charger, the LED is turned off. Now the battery is getting charged up. After some time, when we get above 4.2V the LED will turn ON so the charging process is complete. Current is now flowing through the diodes and transistor and we skip the battery, so the cell is protected from overvoltage. I measure battery and it is 4.1 volts.


 article I am going to teach you how to make 3.7 Volt Lithium ion or LiPo battery charger circuit Lithium ion or LiPo batteries are very popular, especially with makers like. These batteries are also very sensible and dangerous. If you don't control the process of charging such batteries, they will stop working or get worse. The battery can swell and even explode from overcharging, and a deep discharge can make the battery fail.

We have a PNP transistor connected in series with 4 diodes that will simulate a load. At the base of the transistor, we have a Zener reference diode (TL431) which will get open at a certain voltage value and by that connects ground to the transistors base and when the transistor is active, we bypass the battery and waste the power on the diodes instead. This ZENER diode is the TL431 and it has a reference pin, so by adjusting the potentiometer we can set this reference to be at 4.2V, that's how we select when the charging process will stop.


Before understanding how the circuit works, let me tell you that I am using custom-made PCB to make this circuit. This project is sponsored and supported by JLCPCB

I supply it with 4.2V from my power supply. I connect my multimeter at the output and using the potentiometer, we first fix the threshold value to around 4.2V, I will use a battery which is discharged and below 3.90V When I connect it to the charger, the LED is turned off. Now the battery is getting charged up. After some time, when we get above 4.2V the LED will turn ON so the charging process is complete. Current is now flowing through the diodes and transistor and we skip the battery, so the cell is protected from overvoltage. I measure battery and it is 4.1 volts.

No comments:

Post a Comment

Post Top Ad

Pages